
MATH2050C Assignment 4

Deadline: Feb 5, 2024.

Hand in: 3.2 no. 14b, 16d; 3.3 no. 5, 12c; Suppl Problems no 1, 2, 3.

Section 3.2 no. 14ab, 16bd, 19bd;

Section 3.3 no. 3, 5, 7, 10, 12ac.

Section 3.2

(14b) Solution Use Squeeze Theorem in 1 ≤ (n!)1/n
2 ≤ (nn)1/n

2
= n1/n and limn→∞ n1/n = 1.

(19d) Solution Use
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By Squeeze Theorem we get

lim
n→∞

n!

nn
= 0 .

Section 3.3

(5) y1 =
√
p, p > 0, and yn+1 =

√
p + yn . Use induction it is straightforward to see {yn} is

increasing. To show boundedness we follow the hint and use induction to show yn ≤ 1 + 2
√
p.

Assuming yn ≤ 1 + 2
√
p, we have

y2n+1 = p + yn ≤ p + 1 + 2
√
p = (1 +

√
p)2,

hence
yn+1 ≤ 1 +

√
p < 1 + 2

√
p .

(7) It is clear that xn+1 = xn + 1/xn, x1 > 0, is increasing. Were it bounded from above, its
limit exists by Monotone Convergence Theorem. Letting the limit be b > 0, then passing limit
in the defining relation of the sequence we get b = b + 1/b, which is ridiculous. We conclude
that {xn} is divergent to infinity.

(10). We claim the sequence {yn} given by

yn =
1

n + 1
+

1

n + 2
+ · · ·+ 1

2n
,

is increasing and bounded. First, we have

yn <
1

n
+

1

n
+ · · · n

n
=

n

n
= 1 , ∀n ≥ 1,

hence {yn} is bounded from above. Next,

yn+1 =
1

n + 2
+

1

n + 3
+ · · ·+ 1

2n
+

1

2n + 1
+

1

2n + 2
.

We have

yn+1 − yn =
1

2n + 1
+

1

2n + 2
− 1

n + 1
> 0 , ∀n ≥ 1 ,
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hence it is increasing. By Monotone Convergence Theorem {yn} is convergent.

Note. One can show that the limit is log 2.

(12)(a) By Limit Theorem

lim
n→∞

=

(
1 +

1

n

)n+1

= lim
n→∞

(
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1

n

)
lim
n→∞

(
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n

)n

= e .

(c) By Limit Theorem

lim
n→∞

(
1 +

1

n + 1

)n

=

limn→∞

(
1 +

1

n + 1

)n+1

limn→∞

(
1 +

1

n + 1

) = e .

Supplementary Problems

1. Suppose that limn→∞ xn = x. Prove that

lim
n→∞

x1 + x2 + · · ·+ xn
n

= x .

Solution For ε > 0, fix an n0 such that |xn − x| < ε/3 for all n ≥ n0. Then fix n1 such
that |(x1 + · · ·+ xn0−1)/n ≤ ε/3 for all n ≥ n1 and some n2 such that (n0− 1)|x|/n < ε/3
for all n ≥ n2. Then, for n ≥ max{n0, n1, n2},∣∣∣∣x1 + · · ·+ xn

n
− x

∣∣∣∣ =

∣∣∣∣x1 + · · ·+ xn0−1
n

+
(xn0 − x) + · · ·+ (xn − x)

n
− (n0 − 1)x

n

∣∣∣∣
≤

∣∣∣∣x1 + · · ·+ xn0−1
n

∣∣∣∣ +

∣∣∣∣(xn0 − x) + · · ·+ (xn − x)

n

∣∣∣∣ +

∣∣∣∣(n0 − 1)|x|
n

∣∣∣∣
<

ε

3
+

n− n0 + 1

n

ε

3
+

ε

3
= ε .

2. Determine the limit of (
1− a

n2

)n
, a > 0 .

Hint: Use Bernoulli’s inequality.

Solution Recall that Bernoulli’s inequality (1+x)n ≥ 1+nx, x > −1. For some large n0,
−a/n2 > −1, and we have (1− a/n2)n ≥ 1− na/n2 = 1− a/n for all n ≥ n0. Therefore,
1− a/n ≤ (1− a/n2)n ≤ 1, n ≥ n0, and limn→∞(1− a/n2)n = 1 by Squeeze Theorem.

3. Show the limit of (1− a/n)n, a > 0 exists. Hint: Use (2).

Solution Using (2),

lim
n→∞

(
1− a

n

)n
=

limn→∞
(
1− a2/n2

)n
limn→∞ (1 + a/n)n

=
1

E(a)
.
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4. Prove that e is irrational. Hint: Use the inequality 0 < e−(1+1+ 1
2! +

1
3! +· · ·+

1
k!) <

1
k×k! .

Solution Suppose on the contrary that e = p/q, a rational number. Then taking k = q! ≥
2 in the inequality to get

0 < p(q − 1)!− q!(1 + 1 + 1/2! + · · ·+ 1/k!) < 1/q ≤ 1/2.

Noting that q!(1 + 1 + 1/2! + · · ·+ 1/k!) is a natural number, it is impossible to have two
distinct natural numbers whose difference is less than 1/2. Contradiction holds.


