MATH2050C Assignment 4

Deadline: Feb 5, 2024.
Hand in: 3.2 no. 14b, 16d; 3.3 no. 5, 12c; Suppl Problems no 1, 2, 3.
Section 3.2 no. 14ab, 16bd, 19bd;
Section 3.3 no. 3, 5, 7, 10, 12ac.

Section 3.2

(14b) Solution Use Squeeze Theorem in $1 \leq(n!)^{1 / n^{2}} \leq\left(n^{n}\right)^{1 / n^{2}}=n^{1 / n}$ and $\lim _{n \rightarrow \infty} n^{1 / n}=1$.
(19d) Solution Use

$$
\frac{n!}{n^{n}}=\frac{1}{n} \frac{2}{n} \frac{3}{n} \frac{4}{n} \cdots \frac{n}{n} \leq \frac{1}{n} \frac{2}{n} \frac{n}{n} \frac{n}{n} \cdots \frac{n}{n}=\frac{2}{n^{2}} .
$$

By Squeeze Theorem we get

$$
\lim _{n \rightarrow \infty} \frac{n!}{n^{n}}=0
$$

Section 3.3

(5) $y_{1}=\sqrt{p}, p>0$, and $y_{n+1}=\sqrt{p+y_{n}}$. Use induction it is straightforward to see $\left\{y_{n}\right\}$ is increasing. To show boundedness we follow the hint and use induction to show $y_{n} \leq 1+2 \sqrt{p}$. Assuming $y_{n} \leq 1+2 \sqrt{p}$, we have

$$
y_{n+1}^{2}=p+y_{n} \leq p+1+2 \sqrt{p}=(1+\sqrt{p})^{2},
$$

hence

$$
y_{n+1} \leq 1+\sqrt{p}<1+2 \sqrt{p} .
$$

(7) It is clear that $x_{n+1}=x_{n}+1 / x_{n}, x_{1}>0$, is increasing. Were it bounded from above, its limit exists by Monotone Convergence Theorem. Letting the limit be $b>0$, then passing limit in the defining relation of the sequence we get $b=b+1 / b$, which is ridiculous. We conclude that $\left\{x_{n}\right\}$ is divergent to infinity.
(10). We claim the sequence $\left\{y_{n}\right\}$ given by

$$
y_{n}=\frac{1}{n+1}+\frac{1}{n+2}+\cdots+\frac{1}{2 n},
$$

is increasing and bounded. First, we have

$$
y_{n}<\frac{1}{n}+\frac{1}{n}+\cdots \frac{n}{n}=\frac{n}{n}=1, \quad \forall n \geq 1
$$

hence $\left\{y_{n}\right\}$ is bounded from above. Next,

$$
y_{n+1}=\frac{1}{n+2}+\frac{1}{n+3}+\cdots+\frac{1}{2 n}+\frac{1}{2 n+1}+\frac{1}{2 n+2} .
$$

We have

$$
y_{n+1}-y_{n}=\frac{1}{2 n+1}+\frac{1}{2 n+2}-\frac{1}{n+1}>0, \quad \forall n \geq 1
$$

hence it is increasing. By Monotone Convergence Theorem $\left\{y_{n}\right\}$ is convergent.
Note. One can show that the limit is $\log 2$.
(12)(a) By Limit Theorem

$$
\lim _{n \rightarrow \infty}=\left(1+\frac{1}{n}\right)^{n+1}=\lim _{n \rightarrow \infty}\left(1+\frac{1}{n}\right) \lim _{n \rightarrow \infty}\left(1+\frac{1}{n}\right)^{n}=e
$$

(c) By Limit Theorem

$$
\lim _{n \rightarrow \infty}\left(1+\frac{1}{n+1}\right)^{n}=\frac{\lim _{n \rightarrow \infty}\left(1+\frac{1}{n+1}\right)^{n+1}}{\lim _{n \rightarrow \infty}\left(1+\frac{1}{n+1}\right)}=e
$$

Supplementary Problems

1. Suppose that $\lim _{n \rightarrow \infty} x_{n}=x$. Prove that

$$
\lim _{n \rightarrow \infty} \frac{x_{1}+x_{2}+\cdots+x_{n}}{n}=x
$$

Solution For $\varepsilon>0$, fix an n_{0} such that $\left|x_{n}-x\right|<\varepsilon / 3$ for all $n \geq n_{0}$. Then fix n_{1} such that $\mid\left(x_{1}+\cdots+x_{n_{0}-1}\right) / n \leq \varepsilon / 3$ for all $n \geq n_{1}$ and some n_{2} such that $\left(n_{0}-1\right)|x| / n<\varepsilon / 3$ for all $n \geq n_{2}$. Then, for $n \geq \max \left\{n_{0}, n_{1}, n_{2}\right\}$,

$$
\begin{aligned}
\left|\frac{x_{1}+\cdots+x_{n}}{n}-x\right| & =\left|\frac{x_{1}+\cdots+x_{n_{0}-1}}{n}+\frac{\left(x_{n_{0}}-x\right)+\cdots+\left(x_{n}-x\right)}{n}-\frac{\left(n_{0}-1\right) x}{n}\right| \\
& \leq\left|\frac{x_{1}+\cdots+x_{n_{0}-1}}{n}\right|+\left|\frac{\left(x_{n_{0}}-x\right)+\cdots+\left(x_{n}-x\right)}{n}\right|+\left|\frac{\left(n_{0}-1\right)|x|}{n}\right| \\
& <\frac{\varepsilon}{3}+\frac{n-n_{0}+1}{n} \frac{\varepsilon}{3}+\frac{\varepsilon}{3}=\varepsilon .
\end{aligned}
$$

2. Determine the limit of

$$
\left(1-\frac{a}{n^{2}}\right)^{n}, a>0
$$

Hint: Use Bernoulli's inequality.
Solution Recall that Bernoulli's inequality $(1+x)^{n} \geq 1+n x, x>-1$. For some large n_{0}, $-a / n^{2}>-1$, and we have $\left(1-a / n^{2}\right)^{n} \geq 1-n a / n^{2}=1-a / n$ for all $n \geq n_{0}$. Therefore, $1-a / n \leq\left(1-a / n^{2}\right)^{n} \leq 1, n \geq n_{0}$, and $\lim _{n \rightarrow \infty}\left(1-a / n^{2}\right)^{n}=1$ by Squeeze Theorem.
3. Show the limit of $(1-a / n)^{n}, a>0$ exists. Hint: Use (2).

Solution Using (2),

$$
\lim _{n \rightarrow \infty}\left(1-\frac{a}{n}\right)^{n}=\frac{\lim _{n \rightarrow \infty}\left(1-a^{2} / n^{2}\right)^{n}}{\lim _{n \rightarrow \infty}(1+a / n)^{n}}=\frac{1}{E(a)}
$$

4. Prove that e is irrational. Hint: Use the inequality $0<e-\left(1+1+\frac{1}{2!}+\frac{1}{3!}+\cdots+\frac{1}{k!}\right)<\frac{1}{k \times k!}$. Solution Suppose on the contrary that $e=p / q$, a rational number. Then taking $k=q!\geq$ 2 in the inequality to get

$$
0<p(q-1)!-q!(1+1+1 / 2!+\cdots+1 / k!)<1 / q \leq 1 / 2 .
$$

Noting that $q!(1+1+1 / 2!+\cdots+1 / k!)$ is a natural number, it is impossible to have two distinct natural numbers whose difference is less than $1 / 2$. Contradiction holds.

